SLTS060A

(Revised 6/30/2000)

- High Efficiency > 87%
- Wide Input Range
- Aluminum Heatsink for Applications with Airflow
- Self-Contained Inductor
- Short Circuit Protection
- Over-Temperature Protection
- Pin Compatible with Linear
 3-Terminal, "78" Series Regulators
- Small Footprint

The Power Trends' PT78ST200 is a series of 3-terminal Integrated Switching Regulators (ISRs) that can supply up to 24 watts of regulated 12V power. With a surge capability of 3 Amps and an output voltage that is laser trimmed, it is ideal for inductive load applications such as disk drive motors.

Standard Application

 C_1 = Optional 1 μ F ceramic C_2 = Required 100 μ F electrolytic

Pin-Out Information

Pin	Function
1	V_{in}
2	GND
3	V_{out}

SUGGESTED BOARD LAYOUT COMPONENT SIDE VIEW

Pkg Style 600

Ordering Information

Specifications

Characteristics (T _a = 25°C unless noted)	Symbols	Conditions	PT78ST200 SERIES			
			Min	Тур	Max	Units
Output Current	I_o	Over V _{in} range With forced air cooling	0.1*	_	2.0	A
Short Circuit Current	I_{sc}	V _{in} = V _{in} min	_	5.0	_	Apk
Input Voltage Range	$ m V_{in}$	$0.1 \le I_o \le 2.0A$	16	_	28	V
Output Voltage Tolerance	$\Delta m V_o$	Over V _{in} range, I _o = 2.0A T _a = 0°C to +60°C	_	±1.0	±2.0	%Vo
Line Regulation	Reg _{line}	Over V _{in} range	_	±0.4	±0.8	$%V_{o}$
Load Regulation	Regload	$0.1 \le I_o \le 2.0A$	_	±0.2	±0.4	$%V_{o}$
Vo Ripple/Noise	V_n	V_{in} =17V, I_o =2.0A, V_o =12V	_	120	_	$\mathrm{mV}_{\mathrm{pp}}$
Transient Response (with 100µF output cap)	t _{tr}	50% load change $ m V_o$ over/undershoot	_	100 5.0	_	μSec %V _o
Efficiency	η	V _{in} =17V, I _o =2.0A	_	87	_	%
Switching Frequency	f_{o}	Over V _{in} and I _o ranges	0.95	1.0	1.05	MHz
Absolute Maximum Operating Temperature Range	T_a	_	-40	_	+65	°C
Recommended Operating Temperature Range	T_a	Free Air Convection, (40-60LFM) at $V_{\rm in}$ = 24V, $I_{\rm o}$ =2A	-40	_	+55**	°C
Thermal Resistance	Θ_{ja}	Free Air Convection, (40-60LFM)	_	35	_	°C/V
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's
Mechanical Vibration	_	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, Soldered in a PC board	_	10	_	G's
Weight	_	_	_	11	_	Gran

^{*}ISR will operate down to no load with reduced specifications.

Note: The PT78ST200 Series requires a 100µF electrolytic or tantalum output capacitor for proper operation in all applications.

^{**}See Thermal Derating chart.

Note 1: All data listed in the above graphs, except for derating data, has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. Note 2: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM. (See Thermal Application Notes.)

